Staphylococcus epidermidis Strategies to Avoid Killing by Human Neutrophils
نویسندگان
چکیده
Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs) contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs), including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS). These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.
منابع مشابه
Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils.
Human polymorphonuclear neutrophils (PMN) were made anaerobic by nitrogen washout (oxygen saturation <1%, Eh < -42 mV at pH 7.0), and the ability of the cells to kill bacteria was assayed and compared to the bactericidal activity of aerobic PMN. Anaerobic PMN were able to kill Staphylococcus epidermidis, Enterococcus, viridans streptococci, Pseudomonas aeruginosa, Peptostreptococcus anaerobius,...
متن کاملDetermination of the Critical Concentration of Neutrophils Required to Block Bacterial Growth in Tissues
We showed previously that the competition between bacterial killing by neutrophils and bacterial growth in stirred serum-containing suspensions could be modeled as the competition between a first-order reaction (bacterial growth) and a second-order reaction (bacterial killing by neutrophils). The model provided a useful parameter, the critical neutrophil concentration (CNC), below which bacteri...
متن کاملEffect of dialysate fluids on phagocytosis and killing by normal neutrophils.
Inadequate host defenses may partly explain the problem of recurrent peritonitis in patients on continuous ambulatory peritoneal dialysis. It has been suggested that these defenses may be adversely affected by the fluids used for dialysis, and so we examined the effects of unused, effluent, and infected peritoneal dialysis fluids on phagocytosis and killing by normal neutrophils. We used a clin...
متن کاملThe bacterial peptide N-formyl-Met-Leu-Phe inhibits killing of Staphylococcus epidermidis by human neutrophils in fibrin gels.
To study human neutrophil (polymorphonuclear leukocyte (PMN)) migration and killing of bacteria in an environment similar to that found in inflamed tissues in vivo, we have used fibrin gels. Fibrin gels (1500 microm thick) containing Staphylococcus epidermidis were formed in Boyden-type chemotaxis chambers. PMN migrated < 300 microm into these gels in 6 h and did not kill S. epidermidis when th...
متن کاملPhagocytosis and killing of Staphylococcus aureus by human neutrophils.
Neutrophils are essential for host defense against Staphylococcus aureus infections. Although significant progress has been made, our understanding of neutrophil interactions with S. aureus remains incomplete. To provide a more comprehensive view of this process, we investigated phagocytosis and killing of S. aureus by human neutrophils using varied assay conditions in vitro. A greater percenta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010